Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype.

نویسندگان

  • Stacey Rentschler
  • Alberta H Yen
  • Jia Lu
  • Nataliya B Petrenko
  • Min Min Lu
  • Lauren J Manderfield
  • Vickas V Patel
  • Glenn I Fishman
  • Jonathan A Epstein
چکیده

BACKGROUND Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. METHODS AND RESULTS In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. CONCLUSIONS Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cardiology Myocardial Notch Signaling Reprograms Cardiomyocytes to a Conduction-Like Phenotype

Background—Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. Methods and Results—In hearts whe...

متن کامل

Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.

RATIONALE Tight control of cardiomyocyte proliferation is essential for the formation of four-chambered heart. Although human mutation of NKX2-5 is linked to septal defects and atrioventricular conduction abnormalities, early lethality and hemodynamic alteration in the mutant models have caused controversy as to whether Nkx2-5 regulates cardiomyocyte proliferation. OBJECTIVE In this study, we...

متن کامل

Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation

For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively...

متن کامل

Activation of Notch-mediated protective signaling in the myocardium.

The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed follo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 126 9  شماره 

صفحات  -

تاریخ انتشار 2012